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Abstract

We present the first provenance study of glacial clasts from the offshore northwest Irish 
continental shelf  to support regional, Devensian, ice flow paths from Ireland, Northern 
Ireland and Scotland. Seven clasts retrieved from seabed cores have been examined using 
a range of analytical methods to determine their bedrock provenance. Hand specimen 
description, thin section petrography, biostratigraphy and geochemistry have all proven 
valuable in making reliable identifications. The identification of a clast of arkosic, bioclas-
tic conglomerate, from the mid-shelf  core CE08–12, containing archaediscid foraminifera 
and the calcareous algae Koninckopora tenuiramosa, suggest this rock was sourced from 
the Carboniferous (Lower Viséan)  Ballyshannon Limestone Formation; however, because 
this bedrock type is widespread onshore, and probably offshore, it provides little additional 
constraint on ice flow paths interpreted from geomorphological studies. A clast of sye-
nitic orthogneiss from the outer shelf  Malin Sea core CE08–28, is consistent with deri-
vation from the Proterozoic Rhinns Complex exposed on the island of Inishtrahull. This 
clast identification supports movement of material from east to west, most likely related 
to Northern Irish and/or Scottish ice-flows and agrees with terrestrial and marine geomor-
phological evidence.

Introduction

The British Irish Ice Sheet (BIIS) covered approxi-
mately two thirds of Britain and Ireland during the 
Devensian Last Glacial Maximum around 27,000 
years ago (Clark et  al. 2012).  Knowledge of the 
development and extent of the Devensian BIIS, 
in both onshore and offshore regions, is critical to 
understanding how present-day ice sheets could 
change in the future. Our knowledge of the BIIS 
is limited by an incomplete record of bedrock and 
Quaternary geology onshore, but more so, in off-
shore areas (Fig. 1). Seabed surveys of the Donegal 
Bay and Malin Shelf  have allowed the identifica-
tion of submerged glacial landforms (Benetti et al. 

2010; Dunlop et  al. 2010), which provided much 
needed insight into the extent of BIIS across this 
NE Atlantic region (Fig. 1). Additionally, five tar-
geted seabed cores, collected in 2008 during research 
cruise CE08_16 on the R.V. Celtic Explorer (Benetti 
et al. 2010; Ó Cofaigh et al. 2012), have provided a 
rare opportunity to study to some of the glaciogenic 
deposits that make up these submerged landforms.

Several well-established approaches have been 
employed to infer regional glacial flow paths 
onshore, for example geomorphology (Clark et  al. 
2012; Greenwood and Clark 2008, 2009a, 2009b), 
provenance studies based on till and soil geochem-
istry (Scheib et al. 2010 and 2011; Dempster et al. 
2012, 2013), and the identification of entrained 
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clasts or erratics. Studies that have successfully 
provided insights into glacial flow paths using clast 
provenance include the distribution of Ailsa Craig 
microgranite (Harrison et al. 1987) through the Irish 
Sea Basin and its margins, as famously summarized 

by Charlesworth (1957), and the spread of Rannoch 
granodiorite across the western Grampians 
(Hinxman et al. 1923; Thorp 1987). For a particular 
rock type to be useful in provenance studies it needs 
to be resilient enough to be carried within or under 

Fig. 1—Maps showing: (Lower right panel) Onshore-offshore extent of the study and focus area (red box) with key locational infor-
mation, mapped offshore glacial landforms and positions of drill cores (modified from Benetti et al. 2010; Dunlop et al. 2010). (Upper 
panel) Onshore and offshore bedrock geology of focus area (modified from GSI 2014) with the location of cores and clasts indicated. 
(Lower left panel) Key to onshore and offshore bedrock geology (modified from GSI 2014).
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ice sheets, and must be adequately distinctive that its 
source can be identified. Ideally, the source region 
should be of sufficiently restricted extent to allow 
a travel vector to be identified. The route of a clast 
from source to sink is unlikely to be direct, as trans-
port may have involved multiple glaciations and var-
ious sedimentary processes, and so it is desirable to 
use multiple clasts from erratic trains to determine 
ice flow in a particular area. 

This paper presents the first provenance study of 
clasts recovered from recently discovered primary 
and remobilised glaciogenic deposits on the north-
west Irish continental margin. It discusses the value 
of such work in reconstructing models of glacial 
advance and retreat. 

Focus area
This investigation includes the onshore northwest 
of  Ireland and its offshore extension onto the 
northwest Irish and Malin Sea continental shelf  
(Fig. 1). Much is known about the onshore bed-
rock geology of  the UK and Ireland (BGS 2007; 
GSNI 1997; GSI 2006; Mitchell 2004; Holland and 
Sanders 2009), but understandably far less is known 
about the offshore area (e.g. GSI 2014). The same is 
true for Quaternary geology, with a relative wealth 
of  information available for the onshore areas and 
very little offshore.

Onshore geology and ice accumulations
The oldest rocks present in the focus area are 
of Paleoproterozoic age and are restricted to 
Inishtrahull off  the coast of County Donegal in 
Ireland (Fig. 1), whilst more regionally they are pres-
ent on the Scottish islands of Islay and Colonsay. 
They are comprised of a deformed igneous associ-
ation of mainly syenite and gabbro orthogneisses, 
with minor mafic and felsic intrusions, collectively 
referred to as the Rhinns Complex (Muir et al. 1992, 
1994). A further area of Paleoproterozoic rocks, of 
the mainly granitic Annagh Gneiss Complex, are 
also found in Ireland in northwest County Mayo 
(Daly 1996, 2009).

Large parts of  the focus area are composed of 
the Neoproterozoic Dalradian Supergroup (Fig. 1), 
which comprise metamorphic, schistose psam-
mitic, semipelitic, pelitic and basic igneous litholo-
gies (Long et al. 1992; McConnell and Long 1997; 
Long and McConnell 1999; Cooper and Johnston 
2004a). The Dalradian Supergroup has been 
intruded by late Caledonian (Late Silurian–Early 
Devonian) granitoids of  the Donegal Batholith in 
County Donegal (Pitcher and Hutton 2003). Early 

Caledonian (Ordovician) igneous rocks intrude 
related, Dalradian-affinity blocks of  microconti-
nental crust (=Tyrone Central Inlier and Slishwood 
Division) in counties Tyrone and Sligo (Flowerdew 
et al. 2005; Cooper et al. 2011; Hollis et al. 2012, 
2013a, 2013b). Both the Dalradian Supergroup 
and Donegal Batholith extend offshore where they 
underlie the morainic complexes and drumlin field 
(Fig. 1).

Bedrock of Carboniferous age is present onshore 
around the southern and eastern margins of Donegal 
Bay and this extends westwards offshore (Fig. 1). 
The onshore rocks mapped include Viséan limestone, 
sandstone and mudstone sequences (GSNI 1997; 
GSI 2006, 2014; Somerville and Waters in Waters 
et  al. 2011), whilst the offshore extension of the 
Carboniferous is broadly grouped as Mississippian 
limestone and calcareous shale (GSI 2014).

Paleogene dyke swarms have been mapped 
cross-cutting all older bedrock (GSNI 1997) and 
include the Donegal-Kingscourt Dyke Swarm 
(Cooper et al. 2012) that is particularly well repre-
sented within the limits of the Donegal Batholith, 
and the Killala Dyke Swarm that extends across 
counties Mayo and Sligo (Anderson et  al. 2016, 
2018). The recent Tellus and Tellus Border geophys-
ical surveys (Young and Donald 2013; Hodgeson 
and Young 2016), have demonstrated the remarkable 
extent of these swarms onshore and there is no rea-
son why these should not extend offshore in similar 
fashion.

The onshore Quaternary deposits of northwest 
Ireland are dominated by glacial till. Limited bore-
hole and geophysical data exist for the region and 
consequently the thickness of Quaternary sediments 
(unless absent) remains largely unconstrained. 
Borehole records held by the Geological Survey of 
Northern Ireland for the Foyle catchment around 
Londonderry show that deposits of river alluvium 
and glaciofluvial sands and gravels reach thicknesses 
of up to 25m in valley bottoms. Till tends to be <5m 
on valley slopes, whilst areas of thicker till (≤20m) 
are associated with valley bottoms and drumlin-
ised regions such as the coastal area around Bloody 
Foreland (McCabe 1995).

The configuration of former ice masses can be 
inferred from extensive geomorphological evidence 
in the form of U-shaped valleys, terminal moraines, 
glacial trimlines, drumlins, Rogen moraines, eskers 
and meltwater channels, with the chronology 
of some events supported by radiometric ages. 
Historically, reconstructions of ice masses over 
northwest Ireland have highlighted two ice centres 
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(Charlesworth 1924): 1) a Donegal ice dome centred 
on an area between the Derryveagh and Bluestack 
mountains; 2) a Tyrone ice dome centred on the 
Sperrin Mountains. From the Donegal ice dome, ice 
flowed radially northeast, northwest and west onto 
the continental shelf. Erratic trains of Donegal gran-
ite indicate southerly ice flow towards the Sperrins 
during the early onset of glaciation (Charlesworth 
1924; Colhoun 1971). Later growth of lowland ice 
and development of associated geomorphological 
features, points towards a change in the dominant 
ice centre. Features include a zone of drumlinised 
Rogen moraines orientated in an east-west band, 
starting from Lower Lough Erne and continuing to 
the coast at Donegal Bay is indicative of a fast-flow-
ing ice stream draining both the local ice domes, as 
well as ice originating from Lough Neagh further 
east and the Leitrim uplands to the south (Clark 
et  al. 2012). Further modification of drumlins in 
Donegal Bay indicates a latest stage of ice flow from 
the southwest.

Dating constraints for the timing of deglaciation 
in the region indicate that ice had retreated onshore 
from the shelf somewhere between 19 and 16 cal ka 
BP (Bowen et  al. 2002; McCabe and Clark 2007; 
Ballantyne et al. 2008). Readvances during the late 
glacial period, contemporaneous with the Clougher 
Head and Killard Point stadials, are inferred from 
AMS 14C dates within reworked marine deposits 
and 10BE surface exposure ages (Clark et al. 2007). 
Additionally, the distribution of putative periglacial 
landforms in Donegal and Londonderry (e.g. frost 
polygons, cryoturbated sediments and relict rock 
glaciers) have been used to delineate ice-free areas 
in the region during the last glacial (Kilroe 1908; 
Stephens and Synge 1965; Colhoun 1970). However, 
opinion has shifted in the last thirty years, with the 
realisation that periglacial features may have actively 
formed during the Younger Dryas, or because many 
landforms have been reinterpreted as paraglacial (e.g. 
Wilson 2004). Consequently, there is a great need for 
reinterpretation of the onshore sediment archive. 
The positions of moraines to the south of Donegal 
Bay indicate that the ice sheet during this re-advance 
terminated offshore.

Offshore geology
The offshore portion of the focus area extends from 
Donegal Bay to the southern portion of the Malin 
Sea (Fig. 1), in water depths between 50 and 200m. 
The geological structure of the shelf in this region is 
dominated by fault controlled, northeast-southwest 
trending basement blocks and basins including the 

Donegal Basin and Erris Trough in the outer shelf  
and the Malin Basin in the inner shelf (Naylor and 
Shannon 1982; Fyfe et  al. 1993). A second set of 
east-west oriented faults are likely to represent a 
reactivated older basement-controlled fault system 
(Dobson and Evans 1974; Riddihough and Max 
1976; Evans et al. 1980). Basement rocks similar to 
those of onshore Ireland outcrop in several areas on 
the seafloor and include Precambrian metamorphic 
and Caledonian igneous rocks (Fig. 1). The east-
ern part of the focus area is underlain by the Islay-
Donegal Platform of Precambrian rocks, which is 
the northward and north-eastward continuation of 
the Dalradian Supergroup rocks of Donegal (Evans 
et al. 1980) and the Sperrin Mountains (Cooper and 
Johnston 2004a). Late Caledonian granitic intrusions 
occupy significant areas of the seafloor northwest of 
Malin Head and adjacent the peninsulas of Rossguill 
and Fanad (Dobson and Evans 1974; Evans and 
Whittington 1976). The western part of the offshore 
is underlain by fault bound sedimentary basins con-
taining conglomerates, sandstones and mudstones 
of Late Paleozoic to mid-Cenozoic age (Reeves et al. 
1978; Naylor and Shannon 1982; Fyfe et al. 1993). 

Glacial incursions onto the continental shelf heav-
ily influenced its evolution during the Quaternary 
(Weaver et al. 2000; Serjup et al. 2005). The identifica-
tion of submerged glacial landforms across the entire 
focus area, mainly morainic ridges and drumlins indi-
cates that ice was grounded as far as the shelf edge, 
and that ice from distinct ice domes converged and 
flowed into Donegal Bay and onto the Malin Shelf  
(Greenwood and Clarke 2008, 2009a, 2009b; Benetti 
et al. 2010; Dunlop et al. 2010; Clark et al. 2012; Howe 
et al. 2012; Ó Cofaigh et al. 2012; Dove et al. 2015). 

Quaternary sediment cover on the shelf  ranges 
between zero and >200m thick. It tends to be thick-
est across the younger sedimentary basins, which 
are separated by older, more resistant, basement 
outcrops. In Scottish waters, regional seismic data 
and limited age control through wells suggest sev-
eral regionally persistent seismostratigraphic units 
overlying bedrock, that likely incorporate pre-De-
vensian, Devensian, and Holocene sediments. These 
sediments record successions of glacial to glacioma-
rine conditions and a patchy Holocene cover depos-
ited under changing warmer and colder climatic 
conditions (Fyfe et al. 1993).

In Irish waters, limited information is available 
on the sea bottom subsurface stratigraphy based on 
pinger data acquired by the Irish National Seabed 
Survey mapping in the area (GSI 2002, 2003a, 
2003b). They identified a patchy surficial veneer of 
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Holocene sands and mud overlying stratified mud 
and sands of  possible Late Pleistocene to Holocene 
age. The latter were interpreted as having formed 
in a variety of  estuarine, glaciomarine and open 
marine conditions. A further acoustically distinc-
tive unit is found across most of  the region and is 
interpreted as subglacial or glaciomarine deposits 
of  diamicton.

The Quaternary sediment cover in Irish waters 
appears to be thinner, between 0 and 50m, and it 
has been suggested that the last glacial advance 
on the shelf  removed any pre-existing Quaternary 
sediments and left a thin cover over basement and 
cover strata (King et  al. 1998). Investigation of 
modern sediments and bedforms on the Irish shelf  
also reveal that much of the inner shelf  is exposed 
bedrock or is draped with gravelly coarse sand and 
gravel, whilst the outer shelf  is mainly covered in 
coarse sand with only the deepest parts of the shelf  
seafloor being covered with finer sediment (see fig. 4 
in Evans et al. 2014). The presence of patchy modern 
sediment over glacial deposits in the region has also 
been confirmed through the classification of mul-
tibeam backscatter datasets. Reworking of mobile 
sediment under a long-standing and relatively strong 
current regime is suggested based on the presence of 
erosional and high-energy bedforms, such as sand 
ribbons, and general simulated hydrodynamic con-
ditions in the region (Davies and Xing 2002; Lynch 
et al. 2004; Evans et al. 2014).

Methods

Core description and sampling
Previously recognised offshore glacial features 
(Benetti et  al. 2010; Ó Cofaigh et  al. 2012) were 

cored using the 6m-long, Geo-Resources, Geo-corer 
3000+6000 vibrocorer. Although successful, this 
provided only a very limited quantity of material 
with which to work. The total length of the five cores 
examined is just over 4m (Table 1). 

Core CE08–12 is from the crest of  a moraine 
in c. 100m water depth, about halfway between 
the entrance of  Donegal Bay and the shelf  edge. 
This feature is part of  a series of  NE-SW ori-
ented, nested arcuate ridges (Fig. 1) interpreted as 
recessional moraines that were deposited during 
the ice sheet retreat across the shelf  after the last 
glacial maximum (Ó Cofaigh et  al. 2012). Core 
CE08–29 was collected just beyond the outermost 
of  the morainic ridges offshore Donegal Bay in 
about 110m water depth. Cores CE08–27 (95m 
water depth) and CE08–28 (106m water depth) are 
respectively from the crest and inshore of  one of 
the NW-SE oriented moraines in the Malin Sea that 
were likely deposited at the margin of  an ice flow 
from Scotland (Dunlop et  al. 2010). Lastly core 
CE08–52, from 85m water depth, was collected 
from a drumlin field to the west of  Malin Head and 
Inishtrahull (Fig. 1).

The cores were split lengthwise, photographed 
and detailed sedimentological descriptions were 
undertaken. Core logs (Fig. 2) were drafted featuring 
the main lithological packages, and lithofacies classi-
fications were assigned after Eyles et al. (1983). This 
work mirrors similar work carried out in the region by 
Callard et al. (2018) and Ó Cofaigh et al. (2018). For 
this study, seven lithofacies were identified based on 
lithology, sedimentary structures and shear strength 
measurements (Fig. 2). Predominantly sandy facies 
include: 1. fining upward sand with shell fragments 
(Suf); 2. massive sand with occasional cobbles (Sm); 3.  
crudely laminated muddy sand and sandy mud (Sh). 

Table 1—Core details and clast identifiers.

Core 
number

Latitude 
(ºN)

Longitude 
(ºW)

Water 
depth (m)

Core 
length (m) Feature Clast identifier

CE08-12 54.8501 9.4526 98 0.99 Trough between moraine 
crests

A

CE08-27 55.6683 9.0379 95 0.26 Crest of Malin Sea large 
moraine

B

CE08-28 55.6833 8.9534 109 0.75 Inshore of Malin Sea large 
moraine

C, D, E

CE08-29 55.3778 9.168 108 1.01 Offshore of outer Donegal 
Bay moraine

F

CE08-52 55.2974 8.3953 85 1.11 Drumlin field G
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Gravel facies include: 1. massive, matrix-supported 
gravel with shell fragments (Gms); 2. fining upward 
gravel with shells and shell fragments (Gfu). Lastly, 
diamicton facies include: 1. massive, matrix-sup-
ported diamicton (Dmm); 2. stiff  diamicton (Dmms).

Shear strength measurements, taken from muddy 
sediments with a pocket vane soon after splitting 
cores CE08–29 and CE08–52, give an indication of 
consolidation, which may be useful for interpreting 
the sedimentary processes involved in the deposi-
tion of  muddy units in glacial and pro-glacial envi-
ronments (cf. Hillenbrand et  al. 2005; Ó Cofaigh 
et al. 2007). The muddy sediments in core CE08–28 
were too liquid to attempt a measurement and may 
have been liquefied as a consequence of  the coring 
process. Due to its consistently high shear strength 
(> 50kPa) the diamicton in core CE08–29 led to its 
classification as a stiff  diamicton (Dmms).

After an initial inspection of clasts in the cores, it 
was clear that they needed to be greater than c. 3cm 
(maximum dimension) to be identified with confi-
dence (see Table 2). A total of 12 clasts of suitable 
size were located (Fig. 2) and identified in-situ. Once 
the range of lithologies had been established, deci-
sions were made on which clasts to sample for fur-
ther study. Of the 12, 7 representative clasts were 
selected for removal, and care was taken to ensure 
that sampling was done with minimal damage to the 
remaining material.

Clast and thin section descriptions
Standard methods of  hand specimen and thin 
section description were employed. Sedimentary 
grain size is expressed according to the Udden-
Wentworth scale, and clast sphericity, roundness 
and sorting according to Pettijohn et al. (1973). 

Table 2—Descriptions of clasts. Sedimentary grain size* is expressed using the Udden-Wentworth scale and clast 
sphericity, roundness and sorting according to Pettijohn et al. (1973). Igneous grain size# expressed as either fine 
(<1mm), medium (1–5mm) or coarse (>5mm) (after MacKenzie et al. 1982).

Sample Lithology
Dimension 
(max.) cm Colour Sphericity Roundness Grain szie

Other 
comments

A Fossiliferous, 
conglomeritic 
sandstone 

6 Light grey-
orange brown

Low Rounded Medium-
pebble*

Carbonate 
cement 
and fossil 
fragments 
inc. crinoid 
ossicles.

B Sandstone 6 Grey N/A N/A Fine* Broken 
fragment

C Gneiss 9 Orange-pink 
with dark green 
patches

Low Rounded Coarse # Foliated 
but retains 
igneous 
texture

RMIN7 Gneiss N/A Orange-pink 
with dark green 
patches

N/A N/A Coarse # Foliation 
faint, retains 
igneous 
texture

D Sandstone 3 Light brown High Well-
rounded

Medium-
coarse*

Highly 
indurated

E Gneiss 5 Orange-brown 
with green 
patches

Low Well-
rounded

Medium 
#

Strongly 
foliated

F Dolerite 3 Dark 
grey-black

Low Sub-
rounded

Fine # Igneous 
texture 
visible 

G Sandstone 8 Light brown Low Rounded Medium*
Highly 
indurated
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Igneous grain size is expressed as either fine 
(<1mm), medium (1–5mm) or coarse (>5mm) 
after MacKenzie et al. (1982).

Biostratigraphy
The identification of  foraminifera and calcareous 
algae was made from thin sections using a standard 
optical microscope. Discoidal archaediscid fora-
minifera characterised by a thick fibrous wall, are 
biostratigraphically significant as they first appear 
in the Lower Carboniferous Arundian substage 
(lower Viséan) (Jones and Somerville 1996; Poty 
et al. 2006; Waters et al. 2011 in Waters et al. 2011). 
Both planispiral and oscillating/sigmoidally coiled 
forms with inner dark microgranular layer and 
lacking sutures are first recorded in the Arundian. 
The first appearance of  the dasycladacean green 
alga Koninckopora with double-layered wall is also 
of  biostratigraphic value as it first appears in the 
Lower Viséan.

Geochemistry 
Two samples were analysed for major, trace and 
rare-earth elements at the British Geological Survey 
in Nottingham. Clast C (MRC721: Table 3) and an 
outcrop sample (RMIN7) collected from the Rhinns 
Complex on the small island of Inishtrahull, located 
about 10km NE of Malin Head (Fig. 1). Sample 
RMIN7 was chosen for analysis because of its phys-
ical similarities to Clast C.

Major elements were determined for pow-
dered whole-rock samples on fused glass beads 
by X-ray Fluorescence Spectrometry (XRF). 
Samples were dried at 105°C before loss on 
ignition (LOI) and fusion. LOI was determined 
after 1 hour at 1050°C. Fe2O3t represents total 
iron expressed as Fe2O3. SO3 represents sul-
phur retained in the fused bead after fusion 
at 1,200°C. Trace elements were analysed on 
pressed powder-pellets by XRF. Rare earth ele-
ments were determined by inductively coupled 
plasma mass spectrometry (ICP-MS). Samples 
were subjected to an HF/HClO4/HNO3 attack 
with residues fused with NaOH before solutions 
were combined. Additional geochemical data 
were compiled from gneissose Proterozoic rocks 
exposed across the north of  Ireland, such as the 
Annagh Gneiss (Winchester and Max 1984), 
Rhinns Complex (Muir et al. 1992, 1994), Tyrone 
Central Inlier (Chew et al. 2008) and Slishwood 
Division (Sanders et al. 1987). Geochemical data 
is presented in Table 3.

Results

Core descriptions
Core CE08–12 (Fig. 2), from an area of nested 
moraines in Donegal Bay (Fig. l), shows an overall 
fining upward sequence from gravel to fine sand. Clast 
A was recovered from the bottom 15cm of this core, 
which is composed mainly of pebbles that are mostly 
sub-rounded and contains bivalve shell fragments up 
to 5cm diameter (Gfu). Through the next 15cm of sed-
iment there is a gradual change in grain size from peb-
bles to granules; shells fragments are still present but 
of similar grain size to the surrounding sediment. The 
top 50cm is composed of massive fine sand to granule 
grade sediment with many shell fragments (Suf).

Core CE08–29, from beyond the outermost 
moraine of Donegal Bay, shows a different sequence 
to the one in core CE08–12. The bottom 70cm is 
composed of a dark greyish, stiff  muddy diamicton 
(Dmms) with increasing shear strength with depth, 
reaching over 100kPa at 75cm below sea floor (bsf). 
This is capped by about 10cm of irregular and alter-
nating thick laminae of poorly sorted, fine sand and 
sandy mud (Sh). On top of this unit, there is c. 10cm 
of poorly sorted pebbles and shell fragments (Gms). 
Clast F was taken from the lower diamicton at c. 
70cm bsf.

Core CE08–27 is from the crest of one of the 
most prominent morainic ridges in the Malin Sea 
and CE08–28 was taken about 5km inshore of it. 
Core CE08–27 is the shortest core included in this 
study at only 26cm. It includes a very similar fin-
ing-upward sequence to that seen in core CE08–12, 
with pebbles to coarse sand with granules and shell 
fragments throughout (Gfu – Suf). At recovery, the 
core had a cobble trapped between core catcher and 
core cutter. The cobble probably stopped the cor-
ing process and suggests that the grain size of the 
underlying sediment was even coarser. Clast B was 
retrieved from the base of this core. 

The upper part of core CE08–28 is similar to that 
of core CE08–27 with coarse sand to granules and 
shell fragments present (Sm), below which is about 
35cm of gray, muddy, possibly liquified diamicton 
(Dmm). This core contained numerous cobble grade 
clasts of which C, D and E were taken for identifica-
tion. Clast C was taken from the upper part of this 
core.

Core CE08–52 was collected from a drumlin 
field. This core is about 1m-long and presents an 
alternation of coarser (Gfu gravel and pebbles) and 
finer units (Dmm muddy diamicton with a shear 
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strength of c. 15kPa) with the occasional presence 
throughout of large pebbles and cobbles. Shell 
fragments are present throughout the core. Clast G 
was collected from the top of this core.

Clast descriptions
A summary of clast or hand specimen characteris-
tics is given in Table 2. Of the seven clasts examined 
(Fig. 3a), all have low sphericity apart from clast D, 

Fig. 3—Representative photomicrographs from glaciogenic clasts (A-G) and the Inishtrahull outcrop sample: (a) clasts A-G; (b) clast 
C (left) and Inishtrahull outcrop specimen RMIN7(right), (c) detrital microcline (m) in clast B (field of view 5mm), (d) crinoids (c) and 
brachiopod (br) bioclasts in clast A (field of view 8mm); (e) basalt with igneous flow texture and coarser (doleritic) segregations asso-
ciated with amygdales in clast F (field of view 1mm); (f) lithons of microcline, plagioclase and quartz with biotite defining foliation in 
clast C (field of view 10mm). (g) Arundian age-indicative foraminifera Uralodiscus rotundus and (h) Paraachaediscus at involutus stage 
(field of view 1mm).
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which displays high sphericity. Roundness varies 
from well-rounded to sub-rounded. A wide variety 
of clast lithologies are present including fossiliferous 
and un-fossiliferous sandstones, gneisses and doler-
ite. In addition to the core derived clasts, a descrip-
tion is provided of an outcrop sample (RMIN7) 
collected from the Rhinns Complex on Inishtrahull 
(Fig. 1). This sample is compared in Figure 3b to 
clast C.

Thin section descriptions
Samples A, B, D and G are sedimentary rocks of 
mixed siliciclastic and carbonate composition. The 
occurrence of abundant microcline and plagioclase 
(Fig. 3c) in all of these samples indicates derivation 
from a metamorphic/granitic protolith and suggests a 
shared provenance. The presence of bioclasts (Fig. 3d) 
and textural characteristics indicate a shallow marine 
shelf to beach environment of deposition. 

Sample F is a basic igneous rock most likely of 
Paleogene age. The composition (Fig. 3e) is that of a 
tholeiitic basalt. The presence of a flow texture and 
fine grain size, point towards its origin as a minor 
intrusion, most probably as a dyke. 

Samples C and E are meta-igneous (granitoid) 
rocks. They contain plagioclase and microcline and 
are highly foliated (Fig. 3f). Sample C (MRC721) 
bears much similarity, in texture and composition 
to Inishtrahull syenitic orthogneiss (RMIN7). These 
two samples are placed next to each other in Table 4 
to allow comparison. 

Biostratigraphy
Two of the four sedimentary clasts examined contain 
bioclasts including brachiopod and/or bivalve, crinoid 
and bryozoan fragments (samples A and G). However, 
sample A also contains foraminifera and calcareous 
algae that are identifiable in thin section. The fora-
minifera Uralodiscus rotundus (planispiral with inner 
dark microgranular layer, Fig. 3g), Eoparastaffella 
simplex, Earlandia sp., Paraachaediscus at involu-
tus stage (oscillating with inner dark microgranular 
layer, Fig. 3h), Endothyra sp., Tetrataxis sp. and the 
calcareous algae Koninckopora tenuiramosa, confirms 
the Mississippian age of this clast as being Arundian 
(Lower Viséan), Eoparastaffella Zone, CF4β-γ sub-
zones (Conil et al. 1991) and MFZ10–11 (Poty et al. 
2006). 

Geochemistry of clast C 
Sample MRC721 (clast C) from core CE08–28 is 
alkaline (Fig. 4a), weakly peraluminous (Fig. 4b), of 
trachytic to trachydacitic composition (according to 

the Total Alkali – Silica diagram of Le Maitre et al. 
1989), and plots within the trachyandesite field of 
Pearce (1996) according to Zr/Ti and Nb/Y ratios. 
Multi-element variation diagrams (normalised to 
n-MORB in Fig. 4c) suggest clast C is consistent 
with derivation from syenitic units of the c. 1,780Ma 
Rhinns Complex (Daly et al. 1991) exposed on the 
Hebridean Islands of Islay and Colonsay, Scotland, 
and on the island of Inishtrahull, Ireland. The 
Rhinns Complex comprises a weakly deformed and 
metamorphosed assemblage of alkaline syenites and 
gabbros, with geochemical characteristics consistent 
with a subduction-related setting: high LILE/HFSE 
and LREE/HREE ratios, together with negative 
Nb, P and Ti anomalies (Muir et  al. 1992, 1994). 
Whereas syenitic units of the Rhinns Complex dis-
play pronounced negative n-MORB normalised Nb, 
P and Ti anomalies, positive Pb and Eu anomalies, 
and subtle negative Y anomalies, gabbros are char-
acterised by negative Eu anomalies and variable P 
and Y anomalies (Fig. 4c; Muir et al. 1994). 

The monzonitic gneiss of core CE08–28 bear a 
striking geochemical resemblance to the syenitic 
orthogneiss sampled on Inishtrahull (RMIN7) in 
terms of its trace element characteristics (Fig. 4). 
Both rocks also have similar concentrations of all 
the major elements and transition metals (Table 4).

Discussion

Sediment lithofacies
The range of lithofacies observed in the cores are gen-
erally found to represent a transition from subglacial 
till (Dmms) to glaciomarine deposition with evidence 
of traction current activity, sediment deformation, 
ice rafting, iceberg turbation and localised mass flows 
(Dmm, Sh and Sm), to post-glacially winnowed sed-
iments of glacial or proglacial origin (Gms, Gfu and 
Suf) (cf. McCabe et al. 1993; Purcell 2014; Peters et al. 
2015). The entire sequence of alternating diamicton 
and gravel (Dmm, Gms and Gfu) of core CE08–52 
is consistent with its location in a drumlin field and 
the stratigraphic complexity of drumlins highlighted 
in the literature (McCabe 1991; Stokes et  al. 2011). 
From the lithofacies observed, the clasts retrieved for 
study are most likely glaciogenic in origin and derived 
from glacial till or morainic deposits.

Clast provenance
Various analytical methods have been used to deter-
mine the bedrock provenance of recovered glacio-
genic clasts. Hand specimen description, thin section 
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Fig. 4—Geochemistry of clast C, RMIN7 and gneissose rocks from the north of Ireland. (a) Total Alkali – Silica diagram of Le Maitre 
et al. (1989) with the alkaline-subalkaline curve from Irvine and Baragar (1971). (b) Alumina Saturation diagram of Barton and Young 
(2002). (c-d) n-MORB normalised multi-element variation diagrams for samples from the Rhinns Complex and Tyrone Central Inlier. 
n-MORB normalisation values from Sun and McDonough (1989). Data sources: Annagh Gneiss (Winchester and Max 1984), Rhinns 
Complex (Muir et al. 1992, 1994), Slishwood Division (Sanders et al. 1987) and Tyrone Central Inlier (Chew et al. 2008).
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Table 4—Whole rock geochemical data for Clast C and gneissose rocks from the north of Ireland. Data sources: 
Annagh Gneiss (Winchester and Max 1984), Rhinns Complex (Muir et al. 1992, 1994), Slishwood Division (Sanders 
et al. 1987) and Tyrone Central Inlier (Cooper and Hollis, unpublished).

Clast C
Rhinns 

Complex Tyrone Central Inlier
Rhinns 

Complex - syenite Annagh Gneiss

MRC721 RMIN7 Average Std Dev Average Std Dev Average Std Dev

Offshore clast 
from till

Inishtrahull 
orthogneiss (n=9) (n=6) (n=29)

wt%

SiO2 61.50 61.17 66.98 8.14 60.32 1.53 67.72 6.63

TiO2 0.70 0.71 0.90 0.56 0.74 0.10 0.69 0.38

Al2O3 17.69 16.96 15.67 2.68 17.88 1.05 14.22 2.11

Fe2O3t 5.49 6.18 6.35 3.78 4.92 1.58 4.62 2.88

MnO 0.11 0.12 0.10 0.06 0.11 0.04 0.08 0.05

MgO 0.37 0.40 1.86 1.04 0.98 0.47 1.53 1.27

CaO 0.70 1.89 1.81 1.63 2.27 0.67 2.50 1.43

Na2O 4.98 4.47 2.42 1.62 6.26 0.74 3.61 0.9

K2O 6.80 6.29 3.38 1.47 5.03 0.90 3.76 1.44

P2O5 0.14 0.16 0.20 0.14 0.26 0.12 0.21 0.13

LOI 0.60 0.61 1.91 1.11 0.66 0.09

ppm

Li 8 9

Be 0.9 1.3

B <17 <17

V <4 <4 103 54

Cr 2 2 106 12 6.00 2.28 33 20

Sc 12 7

Co 2.47 2.28 20.31 12.33

Ni 2 <2 37 23 4.17 1.60 15 10

Cu <3 6 26 19

Zn 83 101 80 54

Ga 19.4 21.6 19.9 6.0

As 5.6 <0.3

Se <1 2

Rb 76.1 90.5 94.6 47.8 40.83 6.68 117 32

Sr 137 186 178 57 489.33 256.32 443 180

Y 14.8 18.4 26.4 13.0 14.67 6.38 32 23

Zr 139 112 242 128 131.67 44.74 150 56

Nb 9.99 12.1 19.9 13.5 3.83 1.47 14 8

Mo 0.3 <0.1

Ag <0.2 <0.2

(Continued)
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petrography, biostratigraphy and geochemistry have 
all proven valuable in making reliable identifications. 
Archaediscid foraminifera and the calcareous algae 
Koninckopora tenuiramosa in clast A, confirms its 
age as Mississippian, Arundian (Lower Viséan), 
Eoparastaffella Zone CF4β-γ subzones (Conil et al. 
1991) and MFZ10–11 (Poty et  al. 2006). This is 
consistent with a provenance in the Ballyshannon 
Limestone Formation. 

Data presented here suggest that clast C (and 
petrographically similar clast E) was derived from 
syenitic orthogneisses of the Rhinns Complex sim-
ilar to that exposed on Inishtrahull off  the north 
Donegal coast, and the Hebridean Islands of Islay 
and Colonsay, Scotland. Together these exposures 
form part of the Colonsay-West Islay block (Chew 
and Strachan 2013). Petrographic characteristics 
and whole-rock geochemistry rule out other possible 

Table 4—(Continued).

Clast C
Rhinns 

Complex Tyrone Central Inlier
Rhinns 

Complex - syenite Annagh Gneiss

MRC721 RMIN7 Average Std Dev Average Std Dev Average Std Dev

Offshore clast 
from till

Inishtrahull 
orthogneiss (n=9) (n=6) (n=29)

Cd 0.07 0.06

Sn 0.3 1.0

Sb 0.21 0.33

Cs 0.84 0.80 1.12 0.69

Ba 1017 1452 591 216 2491.67 721.93 864 323

La 24.8 10.5 30.4 22.4 39.98 14.90

Ce 40.5 29.1 67.7 53.9 79.32 30.86

Pr 5.72 3.59 7.85 6.17 10.12 3.85

Nd 24.5 17.4 29.2 23.1 40.54 13.68

Sm 4.76 4.17 5.58 4.34 7.17 2.21

Eu 3.17 2.75 1.28 0.85 4.38 1.02

Tb 0.51 0.54 0.71 0.58 0.67 0.22

Gd 3.91 3.92 4.67 3.75 5.67 1.72

Dy 3.11 3.58 3.86 3.11 3.38 1.27

Ho 0.59 0.68 0.74 0.62 0.62 0.23

Er 1.67 2.13 1.96 1.64 1.56 0.59

Tm 0.24 0.29 0.27 0.22 0.21 0.09

Yb 1.55 1.97 1.78 1.48 1.27 0.52

Lu 0.24 0.32 0.25 0.21 0.21 0.08

Hf 3.5 3.1

Ta <0.5 0.5

W <4 <4

Tl 0.25 0.31

Pb 13.6 17.9 16.6 7.4 79.00 5.66

Bi 0.012 0.026

Th 1.2 2.7 7.4 4.5 2.67 1.21

U 0.83 1.67 1.00 0.30
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bedrock sources of gneiss in the north of Ireland, 
such as the Tyrone Central Inlier, Slishwood Division 
and Annagh Gneiss Complex (see following). 

The Tyrone Central Inlier of counties Tyrone and 
Londonderry is characterised by sillimanite-grade 
psammitic and semipelitic paragneisses, with syn-
deformational Grampian (c. 475Ma) leucosomes 
and pink cross-cutting muscovite-bearing pegmatites 
(Chew et al. 2008). It is predominantly subalkaline 
(Fig. 4a) and characterised by significantly higher 
Th and Zr concentrations than the Rhinns Complex, 
weakly negative Eu anomalies, and steep n-MORB 
normalised profiles through the following elements: 
Cs, Rb, Ba, Th and U (Fig. 4d). No alkaline intru-
sive rocks or orthogneisses are known to exist in the 
Tyrone Central Inlier. Clast C is also characterised by 
significantly higher SiO2, MgO and Ba, and lower Cr, 
Co and Ni, than the Tyrone Central Inlier (Table 4).

The Annagh Gneiss Complex is a Palaeoproterozoic 
orthogneiss terrane exposed in County Mayo, west-
ern Ireland (Daly 1996, 2009; Chew and Strachan 
2013). It includes early (c. 1,750Ma) calc-alkaline 
orthogneisses of granodioritic to granitic composi-
tion (the Mullet gneisses), with foliation-concordant 
amphibolitised mafic rocks, were subsequently 
intruded by the A-type Cross Point gneisses at 
c.  1,270Ma and juvenile granitoids and associated 
basic rocks at c. 1177Ma (the Doolough gneisses). 
Subsequent Grenville deformation was punctuated 
by the intrusion of the Doolough peralkaline granite 
at c. 1,015Ma. Although limited geochemical data is 
available from the Annagh Gneiss Complex (Table 4), 
its calc-alkaline nature, pervasive deformation and 
high-metamorphic grade (with widespread migmati-
sation) rules this unit out as a bedrock source for the 
alkaline monzogranitic rocks in core CE08–28. 

The Slishwood Division of County Sligo is a 
granulite-facies assemblage of migmatised psam-
mitic, subordinate pelitic and semipelitic and rare 
calc-silicate paragneisses (Sanders et al. 1987). Minor 
ultramafic, mafic, tonalitic and granite-pegmatite 
units also occur (Sanders et al. 1987; Flowerdew et al. 
2005). Few geochemical data exist for the Slishwood 
Division (Fig. 4a), although based on its constituent 
units and high metamorphic grade (granulite- and 
an earlier eclogite-facies) it is considered an unlikely 
source for the orthogneiss clasts (C and E).

Clast F, a basic igneous rock, was most likely 
derived from a Paleogene dyke as indicated by its flow 
texture and fine grain size. These linear intrusions are 
present across Northern Ireland, the north of Ireland 
(Cooper 2004; Cooper et  al. 2012; Anderson et  al. 
2016, 2018), and the western Scottish isles and coast 

(Bell and Williamson 2002), which limits the value of 
Paleogene basalts for provenance work.

Inferring regional ice-flow
The identification of  a clast (A) of  arkosic, bio-
clastic conglomerate from core CE08–12, contain-
ing archaediscid foraminifera and the calcareous 
algae Koninckopora tenuiramosa, suggests this rock 
was sourced from the Lower Viséan Ballyshannon 
Limestone Formation. This bedrock type is how-
ever widespread onshore, and probably offshore, 
and as such its provenance provides little if  any 
additional constraint on ice flow above what can 
be interpreted from the geomorphology (Fig. 5). 

The occurrence of an Inishtrahull affinity clast 
(C) in deposits associated with morainic ridges in the 
northern part of the focus area, suggests movement 
of material from east to west most likely related 
Northern Irish and/or Scottish ice-flows (Fig.  5). 
We cannot discount the possibility that other 
un-mapped outcrops of Inishtrahull type basement 
occur offshore beyond the mapped limits; however, 
if  the onshore bedrock geology is taken as represen-
tative of offshore, then areas of Inishtrahull type 
basement at surface are likely to be geographically 
restricted. 

Conclusions

The likely onshore provenance of clasts from off-
shore glacial sediments on the Irish shelf  has been 
determined using a variety of methods including 
petrography, biostratigraphy and geochemistry. A 
Lower Viséan clast from core CE08–12 in Donegal 
Bay provides limited constraint on ice flow due to 
the widespread occurrence of potential source rocks, 
both onshore and offshore. An Inishtrahull affin-
ity clast from core CE08–28 in the outer Malin Sea 
suggests movement of material from east to west, 
perhaps related to Northern Irish and/or Scottish 
ice-flows. Our limited understanding of seabed 
geology inevitably introduces uncertainties, but this 
combination of clast provenance with submarine 
geomorphology provides the first geochemical evi-
dence of glacial ice-flow from the Irish mainland 
onto the continental shelf. The offshore source, 
and small quantity of material available for analy-
sis, are unavoidable limitations of this investigation 
and, as such, the determinations of clast provenance 
should be considered to augment other evidence of 
ice flow, such as seabed geomorphology, rather than 
providing primary evidence.
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